Laser Ion Source Development for ISOL Systems at RIA

Y. Liu, J.R. Beene, D.R. Schultz, D.W. Stracener, C.R. Vane

Physics Division, Oak Ridge National Laboratory

Oak Ridge, TN USA

Laser Ion Source Based On Resonant Photoionization

Ions of a selected element are produced via stepwise resonant photo excitations followed by ionization in the last transition.

- highly selective
- efficient
- versatile -- applicable to about 80% of all the elements in the periodic table (ionization potential <10eV)

Develop New Ionization Schemes

₅₈ Ce	₉₅ Pr	60Nd	₆₁ Pm	₆₂ Sm	₆₃ Eu	₆₄ Gd	₆₅ Tb	₆₆ Dy	₆₇ Ho	₆₈ Er	₆₉ Tm	₇₀ Yb	₇₁ Lu
00	-	00	01	02	00	01	00	00 -	01				-
771				,			-			_			1 .
₉₀ Th	₉₁ Pa	₉₂ U	₉₃ Np	₉₄ Pu	₉₅ Am	₉₆ Cm	₉₇ Bk	₉₈ FC	₉₉ Es	₁₀₀ Fm	₁₀₁ Md	₁₀₂ No	₁₀₃ Lr

Laser ion sources are being used or developed for on-line production of RIBs at several ISOL facilities

ISOLDE (CERN) ISAC/TRIUMF **GSI** Institute of Spectroscopy (Troitsk) IRIS (Gatchina) **Mainz University** LISOL, Louvain-la-Neuve TIARA (Takasaki) Heavy Ion Research Facility (Lanzhou, China)

ISODE RILIS

 Copper vapor laser pumped dye lasers

Hot cavity interface

 > 20 RIBS provided with overall efficiencies of the order of 10%

Areas in which improvements and developments can be made

Efficiency

- Higher laser power in the ionizer cavity
- Improved ion extraction
- Development of ionization schemes utilizing autoionizing states instead of ionizing directly to the continuum
- Fractionated ground-state population

Selectivity

- Ionization via laser excitation competes with surface ionization in a hot cavity
- Investigate schemes to ionize refractory elements that may be transported as molecules

Reliability and Maintenance

- Use solid state pump lasers instead of copper vapor lasers
- Use Ti:sapphire lasers to replace dye lasers (a gap in wavelength of 500-700 nm will result)

Requirements for a new Laser Ion Source

- High power
- High repetition rate (> 10 kHz)
- High reliability
- Easy tunability
- Reduction of consumables and maintenance
- Cover a wide range of wavelengths
- Capability for 2-step and 3-step ionization schemes

Closing Comments

- This research can be accomplished at the Holifield Radioactive Ion Beam Facility (HRIBF) in an operating ISOL environment with both stable isotopes and shortlived radioactive isotopes
- At ORNL, laser expertise exists in the atomic physics group and among some members of the group presently working in ion source development
- Useful discussions have been initiated with Ulli Koester (ISOLDE) concerning what directions/problems a new laser ion source development project should focus on
- The plan is not to develop new laser technology but to use state-of-the-art laser technology to improve the laser and ion source coupling, develop new ionization schemes, and develop a system that is reliable, efficient, easily tuned, and easy to maintain